skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hakuba, Maria Z"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Earth’s energy imbalance (EEI) is a fundamental metric of global Earth system change, quantifying the cumulative impact of natural and anthropogenic radiative forcings and feedback. To date, the most precise measurements of EEI change are obtained through radiometric observations at the top of the atmosphere (TOA), while the quantification of EEI absolute magnitude is facilitated through heat inventory analysis, where ~ 90% of heat uptake manifests as an increase in ocean heat content (OHC). Various international groups provide OHC datasets derived from in situ and satellite observations, as well as from reanalyses ingesting many available observations. The WCRP formed the GEWEX-EEI Assessment Working Group to better understand discrepancies, uncertainties and reconcile current knowledge of EEI magnitude, variability and trends. Here, 21 OHC datasets and ocean heat uptake (OHU) rates are intercompared, providing OHU estimates ranging between 0.40 ± 0.12 and 0.96 ± 0.08 W m−2(2005–2019), a spread that is slightly reduced when unequal ocean sampling is accounted for, and that is largely attributable to differing source data, mapping methods and quality control procedures. The rate of increase in OHU varies substantially between − 0.03 ± 0.13 (reanalysis product) and 1.1 ± 0.6 W m−2 dec−1(satellite product). Products that either more regularly observe (satellites) or fill in situ data-sparse regions based on additional physical knowledge (some reanalysis and hybrid products) tend to track radiometric EEI variability better than purely in situ-based OHC products. This paper also examines zonal trends in TOA radiative fluxes and the impact of data gaps on trend estimates. The GEWEX-EEI community aims to refine their assessment studies, to forge a path toward best practices, e.g., in uncertainty quantification, and to formulate recommendations for future activities. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract. The Earth climate system is out of energy balance, and heat hasaccumulated continuously over the past decades, warming the ocean, the land,the cryosphere, and the atmosphere. According to the Sixth Assessment Reportby Working Group I of the Intergovernmental Panel on Climate Change,this planetary warming over multiple decades is human-driven and results inunprecedented and committed changes to the Earth system, with adverseimpacts for ecosystems and human systems. The Earth heat inventory providesa measure of the Earth energy imbalance (EEI) and allows for quantifyinghow much heat has accumulated in the Earth system, as well as where the heat isstored. Here we show that the Earth system has continued to accumulateheat, with 381±61 ZJ accumulated from 1971 to 2020. This is equivalent to aheating rate (i.e., the EEI) of 0.48±0.1 W m−2. The majority,about 89 %, of this heat is stored in the ocean, followed by about 6 %on land, 1 % in the atmosphere, and about 4 % available for meltingthe cryosphere. Over the most recent period (2006–2020), the EEI amounts to0.76±0.2 W m−2. The Earth energy imbalance is the mostfundamental global climate indicator that the scientific community and thepublic can use as the measure of how well the world is doing in the task ofbringing anthropogenic climate change under control. Moreover, thisindicator is highly complementary to other established ones like global meansurface temperature as it represents a robust measure of the rate of climatechange and its future commitment. We call for an implementation of theEarth energy imbalance into the Paris Agreement's Global Stocktake based onbest available science. The Earth heat inventory in this study, updated fromvon Schuckmann et al. (2020), is underpinned by worldwide multidisciplinarycollaboration and demonstrates the critical importance of concertedinternational efforts for climate change monitoring and community-basedrecommendations and we also call for urgently needed actions for enablingcontinuity, archiving, rescuing, and calibrating efforts to assure improvedand long-term monitoring capacity of the global climate observing system. The data for the Earth heat inventory are publicly available, and more details are provided in Table 4. 
    more » « less
  3. Abstract Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994–2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm −2 ) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types. 
    more » « less